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Abstract

Empirical studies using survey data on expectations have frequently observed that

forecasts are biased and have concluded that agents are not rational. We establish

that existing rationality tests are not robust to even small deviations from symmetric

loss and hence have little ability to tell whether the forecaster is irrational or the loss

function is asymmetric. We quantify the exact trade-o between forecast ine ciency

and asymmetric loss leading to identical outcomes of standard rationality tests and

explore new and more general methods for testing forecast rationality jointly with flex-

ible families of loss functions that embed quadratic loss as a special case. An empirical

application to survey data on forecasts of nominal output growth demonstrates the

empirical significance of our results.
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1 Introduction

How agents form expectations and, in particular, whether they are rational and e ciently

incorporate all available information into their forecasts, is a question of fundamental impor-

tance in economic analysis. Ultimately this question can best be resolved through empirical

analysis of expectations data. It is therefore not surprising that a large literature has been de-

voted to empirically testing forecast rationality based on survey data such as the Livingston

data or the Survey of Professional Forecasters.1 Summarizing this literature, Conlisk (1996,

page 672) concluded that “Survey data on expectations of inflation and other variables com-

monly reject the unbiasedness and e ciency prediction of rational expectations.”

The vast majority of studies has tested forecast rationality in conjunction with an as-

sumption of mean squared error (MSE) loss. This symmetric loss function has largely been

maintained out of convenience: under MSE loss rationality implies that the observed fore-

cast errors should have zero mean and be uncorrelated with all variables in the current

information set. Yet, a reading of the literature reveals little discussion of why loss should

be symmetric in the forecast error. One would, if anything, typically expect asymmetric loss

as a reflection of the primitive economic conditions of the problem such as, e.g., asymmet-

ric stockout and inventory holding costs.2 This is potentially important since relaxing the

symmetry assumption is known to profoundly change the properties of optimal forecasts, c.f.

Christo ersen and Diebold (1997) and Patton and Timmermann (2002).

Many studies on forecast rationality testing are aware of the limitations of symmetric

loss and indicate that rejections of rationality may be driven by asymmetries. For example,

Keane and Runkle (1990, page 719) write “If forecasters have di erential costs of over- and

underprediction, it could be rational for them to produce biased forecasts. If we were to find

that forecasts are biased, it could still be claimed that forecasters were rational if it could

be shown that they had such di erential costs.” Unfortunately, little is known about the

magnitude of the problem - i.e. how much this really matters in practice. In this paper we
1See, e.g., Bonham and Cohen (1995), Fama (1975), Keane and Runkle (1990), Mankiw, Reis and Wolfers

(2003), Mishkin (1981) and Zarnowitz (1985).
2Indeed, as far back as in the fifties economists distinguished between inventory and backordering costs,

c.f. Arrow, Karlin and Scarf (1958).
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therefore examine the theoretical and practical importance of the joint nature of tests for

forecast rationality. We show that the coe cients in standard forecast e ciency tests are

biased if the loss function is not symmetric and characterize this bias. Under asymmetric

loss, standard rationality tests thus do not control size and may lead to false rejections of

rationality. Conversely, even large ine ciencies in forecasters’ use of information may not

be detectable by standard tests when the true loss is asymmetric.

To demonstrate these points, we revisit the Survey of Professional Forecasters (SPF) data

on US output growth and examine whether the apparently high rejection rate for rationality

found in this data set can be explained by asymmetric loss. We find strong evidence of bias

in the forecast errors of many individual survey participants. In fact, close to 30% of the

individual predictions lead to rejections of the joint hypothesis of rationality and symmetric

loss at the 5% critical level. Allowing for asymmetric loss, the rejection rate is very close

to 5% which is consistent with rationality. Output forecasts thus tend to be consistent

with rationality under asymmetric loss though not under symmetric loss. Furthermore, our

estimates of the direction of asymmetries in loss overwhelmingly suggest that the cost of

overpredicting exceeds the cost of underpredicting output growth.

The plan of the paper is as follows. Section 2 reviews the evidence against symmetric loss

and rationality in forecasts of output growth from the Survey of Professional Forecasters.

Section 3 adopts a flexible family of loss functions to examine standard tests for forecast

rationality based on quadratic loss and shows how they can lead to biased estimates and

wrong inference when loss is genuinely asymmetric. Construction of rationality tests under

asymmetric loss is undertaken in Section 4, while Section 5 presents empirical results and

Section 6 concludes. Technical proofs and details of the data set are provided in appendices

at the end of the paper.

2 Bias in Forecasts of Output Growth

Our paper studies forecasts of US nominal output growth - a series in which virtually all

macroeconomic forecasters should have some interest. Forecasts of output growth have

been the subject of many previous studies. Brown and Maital (1981) studied average GNP
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forecasts and rejected unbiasedness and e ciency in six-month predictions of growth in GNP

measured in current prices. Zarnowitz (1985) found only weak evidence against e ciency

for the average forecast, but stronger evidence against e ciency for individual forecasters.

Batchelor and Dua (1991) found little evidence that forecast errors were correlated with their

own past values. In contrast, Davies and Lahiri (1995) conducted a panel analysis and found

evidence that informational e ciency was rejected for up to half of the survey participants.

2.1 Data

The main data used in this paper is from the Survey of Professional Forecasters (SPF) which

has become a primary source for studying macroeconomic forecasts.3 Survey participants

provide point forecasts of these variables in quarterly surveys. Surveys such as the SPF do

not specify the objective of the forecasting exercise. This leaves open the question what the

objective of the forecaster is. It is by no means clear that the forecaster simply minimizes

a quadratic loss function and reports the conditional mean. For example, in a study of

predictions of interest rates, Leitch and Tanner (1991) found that commercial forecasts

performed very poorly according to an MSE criterion but did very well according to a sign

prediction criterion linked more closely to profits from simple trading strategies based on

these forecasts. Clearly, these forecasters did not use a quadratic loss function.

Survey participants are anonymous; their identity is only known to the data collectors

and not made publicly available. It is plausible to expect that participants report the same

forecasts that they use either for themselves or with their clients. Forecasts should therefore

closely reflect the underlying loss function. Strategic behavior may also play a role and could

induce bias as we briefly discuss below.

The SPF data set is an unbalanced panel. Although the sample begins in 1968, no

forecaster participated throughout the entire sample. Each quarter some forecasters leave

the sample and new ones are included. We therefore have very few observations on most

individual forecasters. We deal with this problem by requiring each forecaster to have partic-
3For an academic bibliography, see the extensive list of references to papers that have used this data source

maintained by the Federal Reserve Bank of Philadelphia at http://www.phil.frb.org/econ/spf/spfbib.html.
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ipated for a minimum of 20 quarters. Imposing this requirement leaves us with 98 individual

forecast series. The data appendix provides more details of the construction of the data.

Figure 1 shows a histogram of the average forecast errors across the 98 forecasters in

the data set. The average forecast error, defined as the di erence between the realized and

predicted value, has a positive mean (0.16% per quarter). Out of 98 sets of forecast errors,

80 had a positive mean, suggesting systematic underpredictions of output growth.

2.2 Forecast Unbiasedness Tests

Under quadratic loss - often referred to as mean squared error (MSE) loss - forecast ratio-

nality has traditionally been studied by testing one of two conditions: (1) that the forecast

under consideration is unbiased and (2) that it is e cient with respect to the information

set available to the forecaster at the time the forecast was made.

Tests of forecast unbiasedness typically use the Mincer-Zarnowitz (1969) regression:

yt+1 = c + ft+1 + ut+1, (1)

where yt+1 is the time t + 1 realization of the target variable - US nominal output growth

in our data - which we denote by Yt+1, ft+1 is its one-step-ahead forecast and ut+1 is a

realization of a scalar error random variable, Ut+1, satisfying E[Ut+1] = 0. Under the null

hypothesis of zero bias we should have c = 0 and = 1.

Table 1 shows the outcome of tests for bias in the forecast errors. Under quadratic loss,

the null of no bias is rejected at the 1% critical level for 16 participants and gets rejected

in 29 cases at the 5% level.4 If MSE loss is accepted, this strongly questions rationality for

a large proportion of the survey participants. On the other hand, if the forecasters incur

di erent losses from over- and underprediction, it would be rational for them to produce

biased forecasts.
4These numbers are a little higher than those reported by Zarnowitz (1985). This is likely to reflect our

longer sample and our requirement of at least 20 observations which gives more power to the test.
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3 Caveats in Rationality Tests under Quadratic Loss

In this section we study the behavior of standard tests of forecast rationality when the

forecaster’s loss function allows for asymmetries. To do so we require a setup that nests

MSE loss as a special case and - in view of the small survey samples typically available -

allows for asymmetries in a highly parsimonious way. To this end we follow Elliott, Komunjer

and Timmermann (2003) and assume that the loss function only depends on the forecast

error, et+1 = Yt+1 ft+1, and belongs to the following two parameter family

L(e; , p) [ + (1 2 )1(e < 0)]ep, (2)

with a positive exponent p and an asymmetry parameter , 0 < < 1.

An attractive feature of the function in (2) is that it generalizes losses commonly used in

the rationality testing literature. When ( , p) = (1/2, 2), loss is quadratic and (2) reduces

to MSE loss. More generally, when p = 2 and 0 < < 1, the family of losses L is piecewise

quadratic and we call it ‘Quad-Quad’. Similarly, when p = 1 and 0 < < 1 we get the

piecewise linear family of losses L, known as ‘Lin-Lin’, a special case of which is the absolute

deviation or mean absolute error (MAE) loss, obtained when ( , p) = (1/2, 1). As moves

away from 1/2 in either direction the loss function becomes increasingly asymmetric.

Intentionally we do not take a stand on what generates asymmetries in agents’ loss

functions. One possibility is linked to production costs as when stockout and inventory costs

di er. Another possibility is related to strategic behavior arising in situations where the

forecaster’s remuneration depends on factors other than the mean squared forecast error, c.f.

Scharfstein and Stein (1990), Truman (1994) and Ehrbeck and Waldmann (1996). Common

features of the models used by these authors is that forecasters di er by their ability to

forecast, reflected by di erences in the precision of their private signals, and that their

main goal is to influence clients’ assessment of their ability. Such objectives are common to

business analysts or analysts employed by financial services firms such as investment banks,

whose fees are directly related to their clients’ assessment of analysts’ forecasting ability.

The main finding of these models is that, consistent with asymmetric loss, the forecasts need

not reflect analysts’ private information in an unbiased manner.
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3.1 Misspecification Bias

Suppose that the exponent p = 2 in equation (2), so that the forecaster’s loss function is

piecewise quadratic or ‘Quad-Quad’,

L2(e; ) [ + (1 2 )1(e < 0)]e2. (3)

L2 is parametrized by a single shape or asymmetry parameter, , whose true value, 0, may

be known or unknown to the forecast evaluator. This loss function o ers an ideal framework

to discuss how standard tests of rationality - derived under MSE loss ( 0 = 1/2) - are a ected

if the true loss function is ‘Quad-Quad’ with 0 6= 1/2.
As previously discussed, forecast errors should be unpredictable under MSE loss so it is

common to test forecast rationality by means of the e ciency regression

et+1 =
0vt + ut+1, (4)

where et+1 is the forecast error and vt are the observations of a d × 1 vector of variables
(including a constant), denoted Vt, that are known to the forecaster at time t. Assuming that

a sample of forecasts running from t = to t = T + 1 is available, the regression (4) tests

the orthogonality condition E[
PT+ 1

t= VtUt+1] = 0, obtained under the assumption that the

forecaster’s loss is quadratic. If, in reality, the true loss function is ‘Quad-Quad’, the correct

moment condition is E[
PT+ 1

t= VtUt+1] = (1 2 0)E[
PT+ 1

t= Vt|et+1|]. In other words,
by misspecifying the forecaster’s loss, we omit the variable (1 2 0)|et+1| from the linear

regression (4) and introduce correlation between the error term and the vector of explanatory

variables. Hence, the standard OLS estimator ˆ [
PT+ 1

t= vtv
0
t]

1[
PT+ 1

t= vtet+1] will be

biased away from by a quantity which we derive in Proposition 1:

Proposition 1 Under assumptions (A1)-(A4) given in Appendix A and under ‘Quad-Quad’

loss L2, the standard OLS estimator, ˆ, in the e ciency regression (4) has a bias that equals

plim ˆ = (1 2 0)
1

V hV , (5)

where V T 1
PT+ 1

t= E[VtV
0
t ] and hV T 1

PT+ 1
t= E[Vt|et+1|].
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In other words, the misspecification bias depends on: (i) the extent of the departure from

symmetry in the loss function L2, quantified by (1 2 0); (ii) the covariance vector hV of

the instruments used in the test, Vt, with the absolute value of the forecast error, |et+1|; and
(iii) the covariance matrix of the instruments, V .

Some positive implications can be drawn from Proposition 1, improving our understand-

ing of standard e ciency tests when the forecaster’s loss is asymmetric ( 0 6= 1/2) :

• In the usual implementation of e ciency regressions such as the one in (4), a constant

is included in Vt and we can write Vt = (1, Ṽ 0t )
0. The first element of the covariance

vector hV then equals T 1
PT+ 1

t= E[|et+1|]. Thus, when 0 6= 1/2, there will always
be bias in at least the constant term, unless the absolute forecast error is zero in

expectation. This can only occur in the highly unlikely situation where the forecasts

are perfect and the forecast errors are zero with probability one, so standard tests of

forecast rationality will in general be biased under asymmetric loss.

• The bias of ˆ decreases with the variability of the regressors. In other words, if the
covariance matrix V is su ciently large, it can ‘drown out’ the bias. Moreover,

whenever the matrix V is nonsingular, the bias that arises through the constant term

will extend directly to biases in the other coe cients for each regressor whose mean

is nonzero. This follows from the interaction of 1
V and the first term of hV . Hence,

even when regressors have no additional information for improving the forecasts, they

may still have nonzero coe cients when the loss function is misspecified, giving rise to

false rejections.

• In practice, we can easily evaluate the relative biases for each coe cient in the e ciency

regression (4) by simply computing the term 1
V hV . For any degree of asymmetry,

the latter can be consistently estimated by regressing the absolute forecast errors on

Vt. Such regressions should accompany results that assume quadratic loss, especially

when there are rejections. They allow us to understand how sensitive the results are

to misspecifications of the loss function, at least of the form examined here.
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3.2 Power of E ciency Tests

Misspecification of the loss function not only a ects the bias of the standard OLS estima-

tor ˆ in (4) but also its asymptotic distribution. Hence, rationality tests implemented by

traditional MSE regression based on the null hypothesis = 0 might well lead to incorrect

inference. Proposition 2 allows us to study the magnitude of this problem:

Proposition 2 Under Assumptions (A1)-(A5) listed in Appendix A and under ‘Quad-Quad’

loss L2, the asymptotic distribution of ˆ in the e ciency regression (4) is

T (ˆ )
d
N(0, V ), (6)

where + (1 2 0)
1

V hV and the expression for V and its consistent estimator ˆV

are provided in Appendix A. For local deviations from symmetric loss, 0 = 1/2, given by

0 =
1
2
(1 aT 1/2), and local deviations from rationality, = 0, given by = bT 1/2, with

a and b fixed, the Wald test statistic based on the e ciency regression (4) is asymptotically

distributed as T ˆ
0 ˆ 1
V
ˆ d 2

d(m), a non-central chi-square with d degrees of freedom and

non-centrality parameter m given by

m = a2 V + b
0
V

1b+ 2ab0kV , (7)

where the d-vector kV and the scalar V are defined in Appendix A.

What Proposition 2 shows is: (i) that for a wide range of combinations of the asymmetry

parameter, 0 6= 1/2, and the regression coe cient, , e ciency tests may fail to reject even

for large degrees of ine ciency ( 6= 0); (ii) when the forecaster genuinely uses information
e ciently ( = 0) the e ciency test will tend to reject the null provided loss is asymmetric

( 0 6= 1/2). More specifically,

• Spurious rejections of the rationality hypothesis follow whenever the absolute value of
the forecast error is correlated with Vt and the standard error of ˆ is not too large.

Since the power of the rationality test for = 0 is driven entirely by the noncentrality

parameter m, it su ces to consider this parameter to study the power of the standard
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rationality test in the directions of nonzero a and b. Non-zero values of a and b have

very di erent economic interpretations: b 6= 0 implies that the forecasting model is

misspecified, while a 6= 0 reflects asymmetric loss. Only the former can be interpreted
as forecast ine ciency or irrationality. Yet, for given values of V , V and kV we

can construct pairs of values (a, b) that lead to identical power (same m). Standard

e ciency tests based on (4) can therefore not tell whether a rejection is due to irra-

tionality or asymmetric loss - i.e., they lack robustness with respect to the shape of the

loss function. A large value of m can arise even when the forecaster is fully rational

(b = 0) provided that |a| is large.5

• Conversely, suppose that the test does not reject, which would happen at the right
size provided m = 0. This does not imply that the forecast is rational (b = 0) because

we can construct pairs of non-zero values (a, b) such that m = 0. This will happen

when the misspecification in the forecasts cancels out against the asymmetry in the

loss function. The test will not have any power to identify this problem.

To demonstrate the importance of these points, Figure 2A plots iso-m - or, equivalently,

iso-power - curves for di erent values of a and b, assuming a test size of 5% and Vt = 1.6

Under MSE loss and informational e ciency a = b = 0. Positive values of a correspond

to 0 < 1/2, while negative values of a represent 0 > 1/2. For any value of m we can

solve the quadratic relationship (7) to obtain a trade-o between a and b. When m = 0 (the

thick line in the center), the test rejects with power equal to size and the trade-o between

a and b is simply b = aĥV . The two m = 0.65 lines represent power of 10%, the m = 1.96

lines give 50% power, while the m = 3.24 lines furthest towards the corners of the figure
5When a 6= 0, the constant term in (4) is particularly likely to lead to a rejection even when the forecasts

are truly rational. This bias will be larger the less of the variation in the outcome variable is explained (since

E[|et+1|] is increasing in the variation of the forecast error).
6For this case V = 1 and hV is a scalar that can be estimated by ĥV = T 1

Pt=T+
t= |et+1|. Hence,

k̂V = ĥV /ˆ
2
u and ˆV = ĥ

2
V /ˆ

2
u with ˆ2u being the variance of the residuals of the regression are consistent

estimators of kV and V , respectively. Values for ˆu and ĥV were chosen to match the survey data in the

empirical section.
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represent power of 90%.7 The lines slope downward since a larger value of a corresponds to

a smaller value of 0 and a stronger tendency to underpredict which cancels out against a

larger negative bias in b.

Pairs of values a, b on the m = 0 line are such that biases in the forecasts (non-zero b)

exactly cancel out against asymmetry in loss (non-zero a) in such a way that the standard

test cannot detect the bias (in the sense that power = size) even though forecasters are

irrational. For nonzero values for m, we see the converse. The point where these contours

cross the b = 0 boundary (in the centre of the graphs) gives the asymmetry parameter that

if true for the forecaster would result in rejections with greater frequency than size even

though the forecaster is rational for that asymmetric loss function.8

Economic interpretation of these results is facilitated by plotting the power contours in

, space, where the latter is reported in standard error units of the e ciency regression

(4). For this plot - shown in Figure 2B - the iso-power lines become upward-sloping as

larger values of lower the loss-induced bias and hence cancel out against larger ine ciency

biases, . The figure shows that biases as large as 3.5 standard error units away from zero will

be virtually undetectable provided the loss function is su ciently asymmetric. Conversely,

moving vertically along the = 0 ‘rationality line’, we find that strongly asymmetric loss

can lead to a 90% chance of falsely rejecting the null of rationality.

4 Rationality Tests under Asymmetric Loss

The lack of robustness of standard rationality tests to asymmetries suggests that a new set

of tests is required. In this section we describe two such approaches. The first approach

is applicable when the shape and parameters of the loss function are known. This set-

up does not pose any new problems and least-squares estimation still applies, albeit on a
7The range of values for a in the figure (-10, 10) ensures that 0 (0, 1) when T = 100. This range

becomes more narrow (wider) for smaller (larger) sample sizes.
8Only if ĥV = 0 would asymmetric loss not cause problems to the standard test. In this case the absolute

value of the forecast error is not correlated with the instrument, Vt, there is no omitted variable bias and

the iso-power curves would be vertical lines, so size would only be controlled when b = 0.
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transformation of the original forecast error. The second case arises when the parameters of

the loss function are unknown and have to be estimated as part of the test. This framework

requires di erent estimation methods which we describe below.

4.1 Known Loss

Under a loss function L(e; ), characterized by some shape parameter , the sequence of

forecasts {ft+1} is said to be optimal under loss L if at any point in time, t, the forecast
ft+1 minimizes E[L(et+1; )|It] - the expected value of L conditional on the information set
available to the forecaster, It. This implies that, at any point in time, the optimal forecast
errors {et+1} satisfy the first order condition E[L0e(et+1; )|It] = 0, where L0e denotes the

derivative of L with respect to the error et+1. When both L and are known we can simply

transform the observed forecast error et+1 and test the orthogonality conditions by means of

the ‘generalized’ e ciency regression

L0e(et+1; ) =
0vt + ut+1, (8)

where the error term ut+1 satisfies E[
PT+ 1

t= VtUt+1] = 0. Under standard regularity condi-

tions, the linear regression parameter can be consistently estimated by using the ordinary

least squares (OLS) estimator ˜ [
PT+ 1

t= vtv
0
t]

1[
PT+ 1

t= vtL
0
e(et+1; )]. As for the stan-

dard quadratic case in (4), forecast rationality is equivalent to having = 0. Hence, under

general loss a test for rationality can be performed by: (i) first transforming the observed

forecast error et+1 into L0e(et+1; ), then (ii) regressing the latter on Vt by means of the re-

gression (8) and finally (iii) testing the null hypothesis that all regression coe cients are

zero, i.e. = 0.

To demonstrate this type of test, suppose that it is known that the forecaster has a

‘Quad-Quad’ loss function with known asymmetry parameter 0 6= 1/2. For this case the
generalized e ciency regression takes the simple form

et+1 (1 2 0)|et+1| = 0vt + ut+1. (9)

When 0 equals one half, the previous regression collapses to the one traditionally used in

tests for strong rationality (4). Assuming that the forecaster’s loss is quadratic, ( 0 = 1/2),

11



amounts to omitting the term (1 2 0)|et+1| from the regression (9). Whenever 0 6= 1/2,
the estimates of the slope coe cient in the resulting e ciency regression (4) are biased.

This finding is as we would expect from the standard omitted variable bias result with the

di erence that we now have constructed the omitted regressor.

4.2 Unknown Loss Parameters

For many applications both L and are unknown to the forecast evaluator. One way to

proceed in this case is to relax the assumption that the true loss is known by assuming

that L belongs to some flexible and known family of loss functions but with unknown shape

parameter, . Forecast rationality tests merely verify whether, under the loss L, the fore-

casts are optimal with respect to a set of variables Vt, known to the forecaster. They can

therefore be viewed as tests of moment conditions, which arise from first order conditions

of the forecaster’s optimization problem. Traditional rationality tests, such as the one pro-

posed by Mincer and Zarnowitz (1969), adopt a regression based approach to testing these

orthogonality conditions. A natural alternative is to use a Generalized Method of Moments

(GMM) framework as in Hansen (1982). The benefits of the latter are easily illustrated

in the ‘Quad-Quad’ case. If the asymmetry parameter, 0, is unknown it is impossible

to compute the term (1 2 0)|et+1| and hence not feasible to estimate the regression co-
e cient, , in (9). However, it is still possible to test whether the moment conditions

E{PT+ 1
t= Vt[( 0 1(et+1 < 0))|et+1| 0Vt]} = 0 associated with the first order condition

of forecast optimality under ‘Quad-Quad’ loss in (3) hold, with = 0 and 0 left unspecified.

The statistic suggested by Elliott, Komunjer and Timmermann (2003) for testing the

null hypothesis that the forecasts are rational takes the form of a test for overidentification:

JT T 1[
T+ 1P
t=

vt(ˆT 1(et+1 < 0))|et+1|]0Ŝ 1
T [

T+ 1P
t=

vt(ˆT 1(et+1 < 0))|et+1|]. (10)

Here ŜT is a consistent estimator of S T 1
PT+ 1

t= E[VtV
0
t (1(et+1 < 0) 0)

2|et+1|2], and
ˆT is a linear Instrumental Variable (IV) estimator of 0,

ˆT

[
T+ 1P
t=

vt|et+1|]0Ŝ 1
T [

T+ 1P
t=

vt(1(et+1 < 0)|et+1|]

[
T+ 1P
t=

vt|et+1|]0Ŝ 1
T [

T+ 1P
t=

vt|et+1|]
. (11)
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In other words, the GMM overidentification test (J-test) is a consistent test of the null

hypothesis that the forecasts are rational, i.e. = 0, even if the true value of the asym-

metry parameter 0 is unknown, and the forecast errors depend on previously estimated

parameters. The test is asymptotically distributed as a 2
d 1 random variable and rejects

for large values. E ectively, we exploit the first order conditions under forecast rationality,

E[
PT+ 1

t= Vt( 0 1(et+1 < 0))|et+1|] = 0, with 0 left unspecified. As a by-product, an

estimate of the asymmetry parameter, ˆT , is generated from equation (11).

Intuitively, the power of our test arises from the existence of overidentifying restrictions.

In practice, for each element of Vt we could obtain an estimate for the asymmetry parameter,

0, that would rationalize the observed sequence of forecasts. However, when the number of

instruments, d, is greater than one, our method tests that the implied asymmetry parameter

is the same for each moment condition. If no common value for 0 satisfies all of the moment

conditions, the test statistic JT in (10) becomes large. This explains why the test still has

power against the alternative that the forecasts were not constructed rationally and why

it is not possible to justify arbitrary degrees of ine ciency in the forecasts by means of

asymmetric loss: if the forecasts did not e ciently use the information in Vt, then ˆT would

be very di erent for each of the moment conditions and the test would reject.

Although this approach does not impose a fixed value of 0, it maintains that the loss

function belongs to the family (2) with exponent p = 2 and the test (10) provides a joint

test of rationality and this assumption. The advantage of this approach is that it loses little

power since only one parameter has to be estimated. It is possible to take an even less

restrictive approach and estimate the moment conditions non-parametrically. However, this

is unlikely to be a useful strategy in view of the short survey data samples typically available.

5 Empirical Results

To see how asymmetric loss a ects the empirical results from Section 2, derived under MSE

loss, we proceed to test rationality of the output forecasts under ‘Quad-Quad’ loss. Results

under four di erent sets of instruments, Vt, are considered, namely: (1) a constant and the

lagged forecast error, (2) a constant and lagged actual GDP growth, (3) a constant, the
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lagged forecast error and the lagged value of GDP growth, and (4) a constant and the lagged

absolute forecast error. These instruments are similar to those adopted in the literature and

have power to detect predictability in forecast errors such as serial correlation.

5.1 Rationality Tests and Estimates of Loss Parameters

Table 2 shows the outcomes of two separate tests for rationality. The first test is for the joint

hypothesis of rationality and symmetric loss ( 0 = 1/2). The second test is for rationality

but allows for asymmetry within the context of the more general family of ‘Quad-Quad’

loss functions. When three instruments are used, the null is rejected at the 1% level for 20

forecasters and it gets rejected for 34 forecasters at the 5% level and 42 forecasters at the

10% level. The results are very di erent when we no longer impose symmetry on the loss

function. For this case no rejection is found at the 1% level, while four forecasts produce a

rejection at the 5% level and 11 do so at the 10% level.

Standard tests of forecast rationality thus have reasonable power in the direction of

detecting asymmetry in the loss function. In fact, rejections of the joint hypothesis of

rationality and symmetry appear mostly to be driven by the symmetry assumption. Our

rejection frequencies under asymmetric loss are almost exactly equal to the size of the test and

hence suggest little evidence against the joint null of asymmetric loss and e cient forecasts.

So far we have not discussed the -estimates although clearly there is considerable eco-

nomic information in these values which should reflect the shape of the forecasters’ loss

function. Figure 3 shows a histogram of the 98 -estimates computed using (11) for Vt = 1.

The evidence is clearly indicative of asymmetric loss. Irrespective of which set of instruments

is used, the proportion of -estimates above one-half never exceeds 20%.

Importantly, the -estimates suggested by our data do not appear to be ‘extreme’ and

are clustered with a mode around 0.38. This corresponds to putting around one and a half

times as large a weight on positive forecast errors as on negative ones. We might have found

-values much closer to zero in which case the degree of asymmetry required to explain

biases in the forecasts would have to be implausibly large. Hence only a modest degree of

asymmetry in the loss function is required to overturn rejections of the null hypothesis.
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5.2 Bias and Type of Forecaster

The SPF data does not identify the a liation of the forecaster. It is natural, however, to

expect the extent of loss asymmetry to be di erent for forecasters associated with academia,

banking and industry. It seems more plausible that academics have less of a reason to produce

biased forecasts than, say, industry economists whose forecasts are produced for a specific

firm or industry and thus - at least in theory - should put more weight on positive forecast

errors if, e.g., inventory costs exceed stockout costs. It is more di cult to conjecture the

size and direction of the bias for the banking forecasters. If these were produced for clients

that were fully hedged with regard to unanticipated shocks to economic growth, one would

expect -estimates closer to one-half. However, if bank losses arising from over-predictions

of economic growth exceed those from underpredictions, again we would expect more -

estimates below one-half than above it.

To consider this issue, we used data from the Livingston survey which lists the fore-

caster’s a liation. Unfortunately this data set tends to be much shorter as forecasts are

only generated every six months. We therefore only required a minimum of 10 observations.

This leaves us with 12 industry, five academic and 12 forecasters from the banking sector -

admittedly a very small sample.

The -estimates for these forecasters are shown in Figure 4. Academic forecasters tend

to produce -estimates closer to one-half than the forecasters from industry and banking.

The joint null of rationality and 0 = 1/2 is not rejected for any of the academic forecasters,

while this hypothesis is rejected at the 5% level for two of the 12 industry forecasters and

for five of the 12 banking forecasters. While this evidence is by no means conclusive given

the very small sample available here, it is indicative that di erential costs associated with

positive and negative forecast errors play a role in explaining forecast biases.

6 Conclusion

Empirical studies frequently find that forecasts from survey data are biased. Does this mean

that forecasters genuinely use information ine ciently and hence are irrational or simply that
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they have asymmetric loss? We have shown in this paper that standard forecast e ciency

tests often cannot distinguish between these two possible explanations. The importance

of this point - which many previous papers have expressed concern about - was validated

empirically as we found that rejections of rationality may largely have been driven by the

assumption of symmetric loss. Conversely, we should not necessarily conclude from the

failure to reject the null when we allow for asymmetric loss that forecasters are rational in

view of the limited ability of rationality tests to identify ine cient use of information in

survey samples on individual forecasters as small as those used here.

Our empirical findings raise the question whether the degree of asymmetry in the loss

function required for forecasts to be e cient is excessive given what is known about the fore-

casting situation. There is, of course, a precursor for this type of question. In finance, the

equity premium puzzle consists of the finding that the value of the risk aversion parameter

required for historical stock returns to be consistent with a representative investor model

appears to be implausibly high, c.f. Mehra and Prescott (1985). In our context, the empir-

ical findings suggest that often only a modest degree of asymmetry is required to overturn

rejections of rationality and symmetric loss. The results therefore point towards the need for

collecting data on the costs associated with forecast errors of di erent signs and magnitude

in order to better understand the forecasters’ objectives.
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Data Appendix

Our empirical application uses the growth in quarterly seasonally adjusted nominal US

GDP in billions of dollars before 1992 and nominal GNP after 1992. The growth rate

is calculated as the di erence in natural logs. Data for the actual values come from two

sources. The o cial (revised) data is from the BEA. To avoid using revised data that was

not historically available to the forecasters we also use real-time data from the Philadelphia

Fed. This provides the vintages of data available in real time and takes the following form:

68.IV 69.I 69.II 69.III 69.IV

68.IV NA 887.8 887.4 892.5 892.5

69.I NA NA 903.4 908.7 908.7

69.II NA NA NA 925.1 924.8

69.III NA NA NA NA 942.3

69.IV NA NA NA NA NA

Rows represent the dates corresponding to the index while columns track the vintage. So,

in 1969.IV, a forecaster looked at a value of 942.3 for 69.III, 924.8 for 69.II and so on. This

real-time data is used to construct real time instruments used in the rationality tests. Both

the lagged forecast error and the lagged value of output growth are based on the historical

vintages available in real time.

Data on the forecasts come from the Survey of Professional Forecasters, also maintained

by the Philadelphia Fed. This data runs from the fourth quarter of 1968 to the first quarter

of 2002. It provides the quarter, the number of the forecaster, the most recent value known

to the forecaster (preceding), the value (most of the times forecasted) for the current quarter

(current) and then forecasts for the next four quarters. We use the values corresponding to

the current and the first forecast to calculate the one-step-ahead growth rate.9

Some forecasters report missing values while others decide to leave for a while, but then

return and continue to produce forecasts. To deal with these problems we followed three

steps. We eliminate individuals with less than 20 forecasts (so, from a total of 512 individuals
9A few forecasts were omitted from the data base. There were clear typos for forecaster number 12

(1989.II), forecasters 20 and 62 (1992.IV) and forecaster 471 (1997.II).
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we keep 107 forecasters).10 We then eliminate forecasters with missing values. This reduces

the number of individual forecasters to 98.

The Livingston data considered in Section 6.3 uses the di erence in the logs of the six-

month forecast (two quarters ahead) over the forecast of the current quarter and starts in

the second semester of 1992 which is the time when current quarter figures start to get

included. Data runs through the second semester of 2002. This data contains information

on the a liation of the forecasters. Most a liations have very few observations, so only

those corresponding to Industry, Academic and Banking were considered. Individuals with

implausibly large forecast errors (greater than 5 percentage points over a six-month period)

and too few observations (less than ten) were excluded from the analysis. This leaves us

with five Academic forecasters, 12 Banking forecasters and 12 Industry forecasters.

10103 out of these 107 individuals have a gap of at least one quarter in their reported forecasts. Most

forecasters skip one or more quarters.
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Appendix A

This appendix describes the forecasting setup, lists the assumptions used to establish

Propositions 1 and 2 and defines the terms referred to in the latter. We use the following

notations: if v is a real d-vector, v = (v1, . . . , vd)0, then |v| denotes the standard L2-norm of
v, i.e. |v|2 = v0v =Pd

i=1 v
2
i . If M is a real d× d-matrix, M = (mij)16i,j6d, then |M | denotes

the L -norm of M , i.e. |M | = max16i,j6d |mij|.

Forecasting scheme:

As a preamble to our proofs, it is worth pointing out that the estimation uncertainty of the

observed forecasts, which we hereafter denote f̂t+1, gives rise to complications when testing

rationality. The models used by the forecasters to produce f̂t+1 are typically unknown to the

econometrician or forecast user. Indeed, there are a number of di erent forecasting methods

which can be used by the forecasters at the time they make their forecasts, most of which

involve estimating (or calibrating) some forecasting model.

n+1=T++2 . . .    t    . . . 

1f̂

+1

2f̂

n

Tf̂

time

1y 2y Ty

forecasts of Yt+1

realizations of Yt+1

forecasters’ 
information

1 1T

. . .  . . . 

. . .    . . . 

tf̂

ty

In addition to di erent models employed, forecasts may also di er according to the fore-

casting scheme used to produce them. For example, a fixed forecasting scheme constructs

the in-sample forecasting model only once, then uses it to produce all the forecasts for the

out-of-sample period. A rolling window forecasting scheme re-estimates the parameters of

the forecasting model at each out-of-sample point. In order to fix ideas, we assume that all

the observed forecasts are made recursively from some date to + T as depicted in the

figure above, so that the sequence {f̂t+1} depends on recursive estimates of the forecasting
model. The sampling error caused by this must be taken into account (see, e.g., West (1996),
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West and McCracken (1998), McCracken (2000)). Throughout the proofs we assume that

the forecasters’ objective is to solve the problem

min
{ft+1}

E[
+T 1X
t=

|et+1|p1(et+1 0) + (1 )|et+1|p1(et+1 < 0)], (12)

and thus define a sequence of forecasts {ft+1} and corresponding forecast errors {et+1}. It
is important to note that {ft+1} which minimizes the above expectation is unobservable in
practice. Instead we assume the econometrician observes {f̂t+1} thus taking into account
that the observed sequence of forecasts embodies a certain number of recursively estimated

parameters of the forecasting model.

Assumptions:

(A1) B where the parameter space B Rd and B is compact. Moreover B̊;

(A2) for every t, 6 t < T + , the forecast of Yt+1 is a measurable function of an t-

measurable h-vector Wt, i.e. ft+1 = ft+1(Wt), where the function ft+1 is unknown but

bounded, i.e. sup |ft+1(Wt)| 6 C < with probability one, and f̂t+1 = ft+1 + op(1);

(A3) the d-vector Vt is a sub-vector of the h-vector Wt (d 6 h) with the first component 1
and for every t, 6 t < T + , the matrix E[VtV 0t ] is positive definite;

(A4) {(Yt,W 0
t)} is an -mixing sequence with mixing coe cient of size r/(r 2), r > 2,

and there exist some Y > 0, V > 0 and > 0 such that for every t, 6 t < T + ,

E[|Yt+1|2r+ ] 6 Y < and E[|Vt|2r+ ] 6 V < ;

(A5) for some small , (0, 1): (i) 1 2 /T and (ii) sup 6t<T+ |t1/2 (f̂t+1 ft+1)| p

0, as and T .

Definitions:

+ (1 2 0)
1

V hV ,

V
1

V V ( ) 1
V ,

V ( ) T 1
PT+ 1

t= E[u2t+1VtV
0
t ] + 2(1 2 0)E[ut+1|et+1|VtV 0t ] + (1 2 0)

2E[e 2t+1VtV
0
t ],

ˆ
V (ˆ) T 1

PT+ 1
t= (êt+1 ˆ0vt)2vtv0t with ˆ V (ˆ)

p
V ( ),

ˆ
V

ˆ 1
V
ˆ
V (ˆ)ˆ

1
V with ˆV

p

V ,

kV V V ( ) 1hV and V h0V V ( ) 1hV .
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Appendix B

Proof of Proposition 1. In the first part of this proof we show that ˆ
p

, where

(
PT+ 1

t= E[VtV
0
t ])

1 · (PT+ 1
t= E[Vtet+1]). We then use this convergence result in the

second part of the proof to derive the expression for the misspecification bias of ˆ. Recall

from Section 4 that the standard OLS estimator is ˆ [
PT+ 1

t= vtv
0
t]

1[
PT+ 1

t= vtêt+1]. In

order to show that ˆ
p

, it su ces to show that the following conditions hold:

(i) is the unique minimum on B (compact in Rd) of the quadratic form S0( ) with

S0( ) T 1
PT+ 1

t= E[(et+1
0Vt)2]; (ii) T 1

PT+ 1
t= vtv

0
t

p
T 1

PT+ 1
t= E[VtV

0
t ]; (iii)

T 1
PT+ 1

t= vtêt+1
p
T 1

PT+ 1
t= E[Vtet+1]. From the positive definiteness of E[VtV 0t ], for

all t (assumption A3) and the continuity of the inverse function (away from zero), it then

follows that ˆ
p

.

We start by showing (i): note that S0( ) = T 1
PT+ 1

t= E[(et+1)
2] 2 0T 1

PT+ 1
t= E[Vtet+1]+

0T 1
PT+ 1

t= E[VtV
0
t ] , so S0( ) admits a unique minimum at if for every t, 6 t < T+ ,

the matrix E[VtV 0t ] is positive definite, which is satisfied by assumption (A3). This verifies

the uniqueness condition (i).

In order to show (ii) and (iii), we use a law of large numbers (LLN) for -mixing sequences

(e.g., Corollary 3.48 in White, 2001). By assumptions (A2) and (A3) we know that for every

t, 6 t < T + , f̂t+1 and Vt are measurable functions of Wt which by (A4) is an -mixing

sequence with mixing coe cient of size r/(r 2), r > 2. Hence, by Theorem 3.49 in

White (2001, p 50) we know that {(êt+1V 0t , vec(VtV 0t )0)0}, where êt+1 = Yt+1 f̂t+1, is an

-mixing sequence with mixing coe cient of the same size r/(r 2), r > 2. For > 0,

we have r + /2 > 2 and r/2 + /4 > 1 so by assumption (A4)

E[|VtV 0t |r/2+ /4] 6 E[|Vt|r+ /2]

6 max{1, 1/2
V } < ,

for all t, 6 t < T + . Hence, by applying the results from Corollary 3.48 in White (2001)

to the sequence {vec(VtV 0t )0}, we conclude that T 1
PT+ 1

t= vtv
0
t converges in probability to

its expected value T 1
PT+ 1

t= E[VtV
0
t ], which shows that (ii) holds.
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Similarly, we know by the Cauchy-Schwartz inequality that, for all t, 6 t < T + ,

E[|Vtêt+1|r/2+ /4] 6 (E[|Vt|r+ /2])1/2 · (E[|êt+1|r+ /2])1/2.

Hence there exists some nr, R+, nr, < , such that

E[|Vtêt+1|r/2+ /4] 6 max{1, 1/2
V } · (nr, · (E[|Yt+1|r+ /2] +E[|f̂t+1|r+ /2]))1/2

6 max{1, 1/2
V } · n1/2r, · (max{1, 1/2

Y }+max{1, Cr+ /2})1/2

< ,

for all t, 6 t < T + , where we have used assumptions (A2) and (A4). Hence, our previous

argument applies to the sequence {êt+1V 0t } as well, and we conclude that T 1
PT+ 1

t= vtêt+1

converges in probability to its expected value T 1
PT+ 1

t= E[Vtêt+1]. Note, however, that

this does not ensure that (iii) holds, as we moreover need to show that substituting et+1 for

êt+1 does not a ect the result, i.e. that T 1
PT+ 1

t= E[Vtêt+1] E[Vtet+1]
p
0. For every t,

6 t < T + , we have

|E[Vt · (êt+1 et+1)]| = |E[Vt · (ft+1 f̂t+1)]|
6 (E[|Vt|2])1/2 · (E[(ft+1 f̂t+1)

2])1/2

6 max{1, 1.2
V } · (E[(ft+1 f̂t+1)

2])1/2.

Since by (A2) we know that ft+1 f̂t+1 = op(1), for all t, we get T 1
PT+ 1

t= E[Vtêt+1]

E[Vtet+1]
p
0. Combined with our previous result this shows that (iii) holds. Hence, we

conclude that ˆ
p

.

We now use this convergence result to derive the bias in ˆ. We know from Section 4 that

the parameter in the generalized regression (9) satisfies the set of identifying constraints

T 1
T+ 1P
t=

E{Vt · [2( 0 1(et+1 < 0))|et+1| 0Vt]} = 0,

so that T 1
PT+ 1

t= 2E[( 0 1(et+1 < 0))Vt|et+1|] = T 1
PT+ 1

t= E[VtV
0
t ] . Using that

2 · 1(et+1 < 0)|et+1| = |et+1| et+1, this last equality can be written T
1
PT+ 1

t= E[Vtet+1]

T 1
PT+ 1

t= E[(1 2 0)Vt|et+1|] = T 1
PT+ 1

t= E[VtV
0
t ] , so by positive definiteness of

E[VtV
0
t ] (A2) we have = (T 1

PT+ 1
t= E[VtV

0
t ])

1·{T 1
PT+ 1

t= E[Vtet+1] E[(1 2 0)Vt|et+1|]}.
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In other words, = (1 2 0) · (T 1
PT+ 1

t= E[VtV
0
t ])

1 · (T 1
PT+ 1

t= E[Vt|et+1|]).
This shows that ˆ

p
+ (1 2 0)

1
V hV with V T 1

PT+ 1
t= E[VtV

0
t ] and hV

T 1
PT+ 1

t= E[Vt|et+1|], which completes the proof of Proposition 1.11

Proof of Proposition 2. We now show that T 1/2(ˆ ) is asymptotically normal by

expanding the first order condition for ˆ around :

[
T+ 1P
t=

vt(êt+1 ˆ 0vt)] = 0 = [
T+ 1X
t=

vt(êt+1
0vt)] (

T+ 1X
t=

vtv
0
t)(
ˆ ). (13)

The idea then is to use (i) T 1/2[
PT+ 1

t= vt(êt+1
0vt)] = T 1/2[

PT+ 1
t= vt(et+1

0vt)] +

op(1), together with (ii) T 1/2
PT

t=1 vt(et+1
0vt)

d
N(0, V ( )), where V ( )

T 1
PT

t=1E[(et+1
0Vt)2VtV 0t ], to show by Slutsky’s theorem that

T 1/2
T+ 1X
t=

vt(êt+1
0vt)]

d N (0, V ( )). (14)

The remainder of the asymptotic normality proof is then similar to the standard case: the

positive definiteness of 1
V , and the consistency of ˆV = T

1
PT+ 1

t= vtv
0
t, ˆV

p
V , ensure

that the expansion (13) is equivalent to T 1/2(ˆ ) = ˆ 1
V T

1/2
PT+ 1

t= vt(êt+1
0vt).

We then use the limit result in (14) and Slutsky’s theorem to show that

T 1/2(ˆ )
d N (0, 1

V V ( ) 1
V ),

which is what Proposition 2 states.

Hence, we need to show that conditions (i) and (ii) hold: For (i) it is su cient to show that

T 1/2
PT+ 1

t= vtêt+1 T 1/2
PT+ 1

t= vtet+1
p
0. We have

T 1/2|
T+ 1P
t=

Vt(êt+1 et+1)| = T 1/2|
T+ 1P
t=

t 1/2+ Vtt
1/2 (f̂t+1 ft+1)|

6 sup
6t6T+ 1

|t1/2 (f̂t+1 ft+1)| · T 1/2
T+ 1P
t=

|Vt|t 1/2+ .

11Moreover, these results ensure that ĥV hV
p
0 and ˆV V

p
0 where ĥV T 1

PT+ 1
t= vt|êt+1|

and ˆV T 1
PT+ 1

t= vtv
0
t, which makes the estimation of the bias components straightforward.
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Note that (A4) implies sup 6t<T+ E(|Vt|) < , so that, for any given > 0, by (A5) and

Chebyshev’s inequality we have

P (T 1/2
T+ 1P
t=

|Vt|t 1/2+ > ) 6 sup
6t<T+

E(|Vt|)/ · T 1/2
T+ 1P
t=

t 1/2+

6 sup
6t<T+

E(|Vt|)/ · (T/ 1 2 )1/2 0

as and T . Therefore, we conclude that T 1/2|PT+ 1
t= vtêt+1

PT+ 1
t= vtet+1| p

0, which implies that (i) holds.

We now show that (ii) holds as well, i.e. that T 1/2
PT

t=1 vt(et+1
0vt)

d
N(0, V ( ))

with V ( ) T 1
PT

t=1E[(et+1
0Vt)2VtV 0t ]. For that, we use a central limit theorem

(CLT) for -mixing sequences (e.g. Theorem 5.20 in White, 2001): first, note that, by

construction, T 1
PT+ 1

t= E[Vt(et+1
0Vt)] = 0. For r > 2, the Cauchy-Schwartz inequality

and assumption (A4) imply that for every t, 6 t < T + ,

E[|Vt(et+1 0Vt)|r] 6 (E[|Vt|2r])1/2 · (E[(et+1 0Vt)2r])1/2

6 max{1, 1/2
V } · (E[nr(|et+1|2r + | |2r|Vt|2r)])1/2

6 max{1, 1/2
V } ·max{1, n1/2r (E[|et+1|2r] + | |2rE[|Vt|2r])1/2},

where nr R+ is a constant, nr < , such thatE[(êt+1
0Vt)2r] 6 E[nr(|et+1|2r+| 0Vt|2r)].

Knowing that for every t, 6 t < T + , E[|et+1|2r] = E[(Yt+1 ft+1)
2r] 6 nr(E[|Yt+1|2r] +

E[|ft+1|2r]) 6 nr( Y + C
2r), we get

E[|Vt(et+1 0Vt)|r] 6 max{1, 1/2
V } ·max{1, n1/2r (nr( Y + C

2r) + | |2r V )
1/2} < ,

by assumptions (A1) ( is an element of a compact set) and (A2) (boundedness of |ft+1|).
Assumption (A3) moreover ensures that the matrix V ( ) is positive definite, so that the

CLT implies T 1/2
PT

t=1 vt(et+1
0vt)

d
N(0, V ( )). This shows that (ii) holds.

The reasoning we described at the beginning of the proof then gives T (ˆ )
d
N(0, V )

with V
1

V V ( ) 1
V . Now note that

V ( ) = T 1
T+ 1P
t=

E[(et+1
0Vt)2VtV 0t ]

= T 1
T+ 1P
t=

E[ 2t+1VtV
0
t ],

4



where t+1 ut+1 + (1 2 0)|et+1| and ut+1 is the realization of the error term Ut+1 in the

generalized e ciency regression (9). Hence,

V ( ) = T 1
T+ 1P
t=

E[u2t+1VtV
0
t ] + 2(1 2 0)E[ut+1|et+1|VtV 0t ] + (1 2 0)

2E[|et+1|2VtV 0t ].

Moreover, the results above ensure that V ( ) can be consistently estimated by ˆ V (ˆ)

T 1
PT+ 1

t= (êt+1 ˆ0vt)2vtv0t. Using that
1

V is positive definite, we can then show that

ˆ
V

ˆ 1
V
ˆ
V (ˆ)ˆ

1
V is a consistent estimator of the asymptotic covariance matrix of the

standard OLS estimator ˆ, i.e. ˆ 1
V
ˆ
V (ˆ)ˆ

1
V = ˆ

V
p

V =
1

V V ( ) 1
V .

To prove the last part of the proposition, let = bT 1/2 and 1 2 0 = aT
1/2 where a

and b are fixed. We can write

T ˆ
0 · ˆ 1 · ˆ = T 1/2(ˆ )0 · ˆ 1 · T 1/2(ˆ )

+T 1/2 0 · ˆ 1 · T 1/2

+2T 1/2 0 · ˆ 1 · T 1/2(ˆ ).

It follows from the first part of the proposition that the first term is asymptotically 2
d

distributed. For the second term, recall from Proposition 1 that = + (1 2 0)
1

V hV

so T 1/2 = (b+a 1
V hV ) and, moreover, ˆV

p

V =
1

V V ( ) 1
V with V nonsingular.

We then have T 0 ˆ 1
V

p
m with

m = (b+ a 1
V hV )

0( 1
V V ( ) 1

V )
1(b+ a 1

V hV )

= b0 V V ( ) 1
V b+ 2ab

0
V V ( ) 1hV + a

2h0V V ( ) 1hV

= b0 1
V b+ 2ab0kV + a2 V ,

where we have let kV be a vector kV V V ( ) 1hV and the scalar V equals V

h0V V ( ) 1hV . For the third term, application of the first part of Proposition 2 and Slut-

sky’s theorem gives, ˆ 1/2
V · T 1/2(ˆ )

d
N(0, I). Hence, T 0 ˆ 1

V (
ˆ )

d
N(0, s)

where

s = (b+ a 1
V hV )

0 1
V (b+ a 1

V hV )

= m.

Therefore, T ˆ
0 ˆ 1
V
ˆ d 2

d +m+N(0,m), which completes the proof of Proposition 2.

5



Figure 1

Histogram of mean forecast errors
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Figure 2A: Combination of asymmetry (a) and bias parameter (b) leading

to identical power of rationality test

Figure 2B: Combination of asymmetry (alpha) and bias parameter (beta in

s.e. units) leading to identical power of rationality test
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Figure 3

Histogram of alpha-estimates
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Figure 4

Histogram of alpha-estimates by affiliation
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Table 1: Tests for bias under MSE loss 

p-value Unbiasedness and 
 = ½ 

<1% 16 
<5% 29 
<10% 33 

Note: this table reports the number of 
forecasters (out of a total of 98) for whom 
the null of symmetric loss (  = ½) could be 
rejected at the specified critical values. 

Table 2: J-tests of rationality and symmetry of the loss function (Quad-Quad) 
Rationality and 

 = ½ 
Rationality and 

unconstrained
Range <1% <5% <10%  <1% <5% <10% 

Inst = 1 13 34 39  1 8 19 
Inst = 2 15 30 33  0 4 12 
Inst = 3 20 34 42  0 4 11 
Inst = 4 12 30 35  0 5 10 

Note: this table reports the number of forecasters (out of a total of 98) for whom the 
null of rationality and symmetry (  = ½) and rationality alone (  unconstrained) could 
be rejected at the specified critical values. The instruments are as follows: 
Inst = 1: constant plus lagged errors 
Inst = 2: constant plus lagged actual values 
Inst = 3: constant plus lagged errors and actual values 
Inst = 4: constant plus lagged absolute errors 


